β-Catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells.
نویسندگان
چکیده
Chronic inflammatory airway diseases like asthma and chronic obstructive pulmonary disease (COPD) are characterized by airway remodeling with altered extracellular matrix (ECM) deposition. Transforming growth factor-β(1) (TGF-β(1)) is upregulated in asthma and COPD and contributes to tissue remodeling in the airways by driving ECM production by structural cells, including airway smooth muscle. In this study, we investigated the activation of β-catenin signaling and its contribution to ECM production by airway smooth muscle cells in response to TGF-β(1). Stimulation of airway smooth muscle cells with TGF-β(1) resulted in a time-dependent increase of total and nonphosphorylated β-catenin protein expression via induction of β-catenin mRNA and inhibition of GSK-3. In addition, the TGF-β(1)-induced β-catenin activated TCF/LEF-dependent gene transcription, as determined by the β-catenin sensitive TOP-flash luciferase reporter assay. Furthermore, TGF-β(1) stimulation increased mRNA expression of collagen Iα1, fibronectin, versican, and PAI-1. Pharmacological inhibition of β-catenin by PKF115-584 or downregulation of β-catenin expression by specific small interfering RNA (siRNA) substantially inhibited TGF-β(1)-induced expression of the ECM genes. Fibronectin protein deposition by airway smooth muscle cells in response to TGF-β(1) was also inhibited by PKF115-584 and β-catenin siRNA. Moreover, transfection of airway smooth muscle cells with a nondegradable β-catenin mutant (S33Y β-catenin) was sufficient for inducing fibronectin protein expression. Collectively, these findings indicate that β-catenin signaling is activated in response to TGF-β(1) in airway smooth muscle cells, which is required and sufficient for the regulation of ECM protein production. Targeting β-catenin-dependent gene transcription may therefore hold promise as a therapeutic intervention in airway remodeling in both asthma and COPD.
منابع مشابه
TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs
Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...
متن کاملTGF-β-Activated Kinase 1 (TAK1) Signaling Regulates TGF-β-Induced WNT-5A Expression in Airway Smooth Muscle Cells via Sp1 and β-Catenin
WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated t...
متن کاملInteractions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis
Radiation therapy induces DNA damage and inflammation leading to fibrosis. Fibrosis can occur 4 to 12 months after radiation therapy. This process worsens with time and years. Radiation-induced fibrosis is characterized by fibroblasts proliferation, myofibroblast differentiation, and synthesis of collagen, proteoglycans and extracellular matrix. Myofibroblasts are non-muscle cells that can cont...
متن کاملActivation of WNT / β-Catenin Signaling in Pulmonary Fibroblasts by TGF-β1 Is Increased in Chronic Obstructive Pulmonary Disease
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by abnormal extracellular matrix (ECM) turnover. Recently, activation of the WNT/β-catenin pathway has been associated with abnormal ECM turnover in various chronic diseases. We determined WNT-pathway gene expression in pulmonary fibroblasts of individuals with and without COPD and disentangled the role of β-catenin in fib...
متن کاملNicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells.
Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 301 6 شماره
صفحات -
تاریخ انتشار 2011